
Cluster Computing

Author: Andrea S Foulkes, Gregory J Matthews, Nicholas G Reich

Biostatistics in Practice: High-Performance Computing with R
7 February 2014

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US



Overview

I Parallel computing allows us (for certain problems) to split a
big job up into many smaller parts and run them in parallel.

I Our laptops or desktops can split a job up into as many
threads as are available.

I This is likely a relatively small number like 4, 8, or 12.



Overview

I Cluster computing connects many computers (nodes)
together on a local network.

I This allows a pooling of resources to increase computing
power.

I This allows a user to access hundreds or even thousands of
cores (if they need them).



MGHPCC

I The Massachusetts Green High Performance Computing
Center (MGHPCC) is one of these clusters.

I Each of the participating instiutions has their own distinct
cluster. We will be using the UMass cluster.

I In order to connect to this cluster, a user has to be on the
UMass campus (or use VPN to the UMass campus.)

I We will need to VPN into the UMass network since we are
currently off campus.



Hypothetical cluster computing workflow

I Transfer data/scripts to cluster

I Log in to the cluster

I Submit a job to the “scheduler”

I Transfer data/results from cluster if needed



The process we will use today

Our order of operations...

I Log in to the cluster

I Transfer data/scripts to cluster

I Submit a job to the “scheduler”

I Look at results



The process we will use today

Our order of operations...

I Log in to the cluster

I Transfer data/scripts to cluster

I Submit a job to the “scheduler”

I Look at results



How to pretend you are at UMass using VPN

I Mac: System Preferences > Network > VPN on left
I Windows: Cisco VPN client

I Server address: vpn2.oit.umass.edu
I Group name: umass
I Password: vpn4umass
I Account name: UMass user ID OR bip[number] (temporary for

BIP2014)
I Password: Enter your password



Accessing the MGHPCC

I Register for the MGHPCC (for UMass):
https://www.umassrc.org/hpc/

I A login and password will be (have been?) assigned to you.

I At the moment, this will be different than your UMass user ID
or email address. (NetID integration coming soon!)



Accessing the MGHPCC

I Unix or Mac
I Unix or Mac: Create a secure shell: ssh

username@ghpcc06.umassrc.org

I Windows
I PuTTY: ghpcc06.umassrc.org (you will be prompted for user

name and password)

I Enter password when prompted. (First time you login, you
will need to change your password, then login again.)

I You are now connected to the cluster!

I Remember: You can only access the MGHPCC if you are on
UMass’s network (physically on campus or VPN)



The process we will use today

Our order of operations...

I Log in to the cluster

I Transfer data/scripts to cluster

I Submit a job to the “scheduler”

I Look at results



Transferring Data to MGHPCC

I We recommend using Cyberduck, a graphical SFTP client.

I Other options include scp and sftp for Mac/Unix command
line users or PSCP/PSFTP for Windows users.

I Let’s try to move the BiPSandbox folder to your
/home/username folder on the MGHPCC.



The process we will use today

Our order of operations...

I Log in to the cluster

I Transfer data/scripts to cluster

I Submit a job to the “scheduler”

I Look at results



Software available on the MGHPCC

I Once logged in, you will be placed in your home directory
(/home/username).

I Full list of available software:
http://wiki.umassrc.org/wiki/index.php/Provided Software

I There is a wide array of available software options.



Using software on the MGHPCC

I In order to use software on the server, you’ll need to load
modules that contain the software.

I We are interested in using R here.

I To load R we use the command: module load R/3.0.1

I We can also unload R with the command: module unload R



Software

I Loading the R module will allow us to run R interactively (by
typing R at the prompt) on the MGHPCC servers.

I But you should not do this!



Batch Mode

I Rather than running R code interactively, we can also run R in
BATCH mode.

I This first requires you to write an R script that you want to
run.

I Then at the command prompt, you can submit the script by
typing: R CMD BATCH [options] scriptName.R

I But you should not do this either!

I We want to submit batch jobs to the cluster, not to the
machine that you login to.



Submitting jobs to the cluster

I In order to submit a job to the cluster we need:
I A R script that we wish to run
I A shell script that calls the R script and submits the job to the

cluster.

I We will then submit the job to the LSF (Load Sharing
Facility) scheduler.

I Note: Commands submitted to LSF are just like if they were
run from a command prompt.



LSF common commands

I bsub - submit a job

I bkill - kill a job

I bjobs - view status of jobs

I bpeek - view output / error files

I bhist - job history

I bqueues - available queues



Batch Mode

I Once we have a .R file that we want to run we can submit it
to the LSF job scheduler.

I What actually gets submited to the LSF scheduler is a shell
script that calls the R file (which we’ll call example.R).

I We need to create a file that contains all of the code we
would have run at the shell prompt.

I Example of a shell script is below. We’ll call this shell script
example.sh

$ module load R/3.0.1

$ R CMD BATCH --vanilla example.R



Submiting jobs to the cluster

I The command bsub allows us to submit the shell script to the
cluster.

I The command below will submit the shell script example.sh to
the cluster.

$ bsub example.sh



Submiting jobs to the cluster: Options

I We can also set many options in our job submission.

I -n: Number of cores requested

I -W: Wall clock time

I -R: Memory per job

I -q: Which queue to submit to

$ bsub -n 4 -R "rusage[mem=2048]" -W 0:10 -q long

example.sh



Submiting jobs to the cluster: Local

I An example shell script is in
BiPSandbox/module3/submitLocalParallelJob.sh.

I Here we submit to the short queue.

I Commands to submit from within a .sh file is the same as
when submitting from the command line:
bsub < submitLocalParallelJob.sh



Submiting jobs to the cluster: Distributed

I We can also specify options in the shell script that we submit
to the LSF scheduler.

I An example shell script is in
BiPSandbox/module3/submitDistrParallelJob.sh.

I Commands to submit is again:
bsub < submitDistrParallelJob.sh

I “Proper” way to distribute your job is using something like
MPI.

I In this example, output is also distributed, less convenient.


